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ABSTRACT 

This paper addresses a procedure for the selection of parameters in Radial Basis Function 

Neural Networks. The approach consists of the combination of unsupervised procedures and a 

new way to scale parameters associated to the values of widths of the radial functions. The 

application of the approach will be illustrated with examples of approximation of functions and 

time series forecasting.  
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1. INTRODUCTION 

Radial Basis Function (RBF) neural networks are effectively utilized in time series forecasting 

[16, 8], approximation of functions [14], control systems [7], pattern classification [1], among 

other applications. 

In its most basic form, RBF networks have only one hidden layer, while Multilayer 

Perceptron (MLP) neural networks present one or more hidden layers, according to its 

specifications [6]. 

Hidden layers in RBF networks have activation functions modeled by radial-basis 

functions, where the more usual are Gaussian functions defined by their centers and widths. The 

output layer has weights that aggregate the outputs of the radial functions, providing the output 

information of the network (which can have more than one output, according to the 

corresponding application). 

There are some strategies used to adjust the parameters (centers, widths and weights) in 

RBF networks, typically classified as empirical, auto-organized and supervised. In empirical 

strategies, the centers of the functions are adjusted randomly, and the width values are given by 

the relationship between the positions of the centers [6]. The objective is to obtain uniform 

distributions for the radial functions in order to enable a good capacity of generalization of the 

network. The weights of the output layer are calculated by the least squares method based on the 

output values of the established Gaussian functions, with a set of input training data and the 

corresponding pattern for the network output in question. Auto-organized strategies [6] use data 

clustering algorithms (K-means, for example) to select the values of the centers of each radial 

basis function. The values of the widths are adjusted empirically, and the weights of the output 

layer are adjusted by the least squares method. The paper of [16] uses an optimized data 

partitioning method which is based on the distance between the centers of the data clustering. 

An additional cost function is associated with an optimization method with the objective of 

adjusting the centers and widths of the radial basis functions. Supervised strategies [6, 10, 15] 

employ methods such as gradient descent to adjust all parameters of a determined RBF network, 

where the error information between the information network output concerned and its desired 

pattern are used in the training process. 

In reference [5] it was shown the algorithm Output Value-Based Initializer, which 

calculates the initial values for the centers and widths of the radial functions according to the 

output values of the target function. In paper [17] also suggested the use of supervised learning, 

where a new discrete-continuous algorithm is proposed for the construction of a RBF model. 

First, the orthogonal least squares is used for an initial model, and the Levenberg–Marquardt 

method is used to optimize the hidden nodes and output weights in the continuous space.  

This paper addresses a procedure for the selection of parameters in RBF neural 

networks. The approach consists of the combination of unsupervised procedures and a new way 

to scale parameters associated to the values of widths of the radial functions. Applications in 

approximations of functions and time series forecasting will be exemplified. 

This paper is organized as follows. Section 2 contains a basic review of the RBF 

networks and the description of typical unsupervised methods for setting parameters. Section 3 

describes the methodology proposed in this paper. Application examples are illustrated in 

Section 4. And in Section 5 is the conclusion of the paper and suggestions for future work. 

2. BASIC REVIEW 

A typical structure of RBF networks is shown in Figure 1. 

 

 



 

 

Fig. 1 Typical RBF neural network structure. 

There are no weights in the first layer of the neural network. The input variables are the 

data of the activation functions (Gj), which are themselves nodes of the hidden layer of the 

network. The typical expression of a radial basis function is given by (1), where cj denotes its 

central value of the function in question, and σj is the width of the RBF. 
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The weights (wi) of the output layer of the network multiply the values (yj) supplied by 

radial basis functions of the model, and the aggregation of these values results in output 

information Y of the network, which is added to a unitary bias value multiplied by the associated 

weight w0. RBF neural networks can have other outputs associated with other corresponding 

weights. The information for each output of a given neural network is modeled by equation (2). 

 

                                                  𝑌 = ∑ 𝑤𝑗
𝑝
𝑗=1 𝐺𝑗(𝐱)                                                             (2) 

2.1. Typical Unsupervised Methods for Setting Parameters 

This item addresses typical procedures unsupervised, often used for adjusting 

parameters of RBF networks. 

 

2.1.1. Values of the Centers of the Gaussian Functions Randomly Selected 

a) The central value of each radial basis function of a network is randomly chosen from 

the training data, and the justification of this procedure is explained in [9]. 

b) The value of width (standard deviation) of each radial basis function network is given 

by expression (3), where Nc is the number of functions used in the hidden layer and Dmax is the 

maximum distance between selected pairs of values of the centers in question. 
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𝐷𝑚𝑎𝑥

√2𝑁𝑐
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A common width value (σkj = σ) for all network functions can be used when the input 

data have a uniform distribution, unusual condition in most practical applications. A more 

feasible procedure is expressed by (4), where cij are values in the neighborhood of the 

corresponding ckj center associated with the radial function in question, a suggested value for p 

is 2 [11]. 
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Another approach [13] uses the data related to the Euclidean distance between the 

center value of each RBF and its immediate vicinity, which information is multiplied by a 

constant K as expressed in (5) in order to establish an overlap appropriate between adjacent 

network functions in question, whose purpose is to improve the interpolation of the resulting 

model. 

 

                                           𝜎𝑘𝑗 = 𝐾. min(‖𝑐𝑘𝑗 − 𝑐𝑖𝑗‖)                                                    (5) 

[2] suggested the use of a scaling factor Ke as expressed in (6) to jointly adjust the 

values of the deviations of RBF, whose values can be estimated by one of three expressions 

mentioned above, allowing a better modeling capability of the resulting network. 

 

                                                        𝜎𝑘𝑗 = 𝐾𝑒 . 𝜎𝑘𝑗                                                                 (6) 

 

c) The values of the weights of the output layer are calculated using the pseudo-inverse 

method (7), where G+ is the corresponding values associated with Gj(x) of RBF functions and Yd 

are the values of the output desired in the neural network. When there are no problems of matrix 

inversion, the conventional least squares method is used. 

 

                                                               𝑤𝑗 = 𝐺+. 𝑌𝑑                                                      (7) 

 

2.1.2. Values of the Centers Determined by Methods of Data Clustering 

 a) The central value of each radial basis function is determined by clustering techniques, 

processing the network data and providing values of the centers of clusters in question. The K-

means algorithm is usually employed in the context of RBF networks [12], and alternatively 

more elaborate methods can be applied, for example, via the self-organizing map or other 

techniques. 

 b) The values of the widths of the RBF can be adjusted by information of distances 

related to centers of the functions and data in the neighboring regions, similarly to the 

procedures mentioned above. Other approaches processing the values of standard deviations 

associated with the RBF information covariance matrices resulting from elliptical data 

clustering algorithms, such as the algorithm of Kessel-Gustafson [12], for example, but that 

tends to be computationally expensive due to the complexity of the algorithm involved. 

c) The values of the weights of the hidden layer are calculated by the methods of least 

squares. 

 



 

3. METHODOLOGY 

This section details the approach suggested in this paper to adjust the parameters of 

RBF networks, compiled from combinations of unsupervised procedures and with and a new 

way to scale parameters. 
 

3.1. Procedure for Setting Parameters in RBF Neural Networks 

1- The number of nodes is chosen for the hidden layer of the RBF neural network in 

question; 

2- Network training data are processed by a clustering algorithm Fuzzy-Cmeans [3] in 

order to optimize the clusters of the corresponding data. The information of the clusters 

will be used to select the parameters of the activation functions, and the number of 

clusters defines the number of nodes in the network hidden layer; 

3- Centers (cj) of the Gaussian functions are the core values of the clusters determined by 

the Fuzzy-Cmeans algorithm; 

4- The widths of the functions are initially estimated with (8), calculating the standard 

deviation (σj*) on the range of data (xj) of each variable associated with the cluster 

identified by the algorithm; 
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5- A new way to scale parameters associated to the initial values of widths of the radial 

functions and intervals of data clusters, is proposed via equation (9). The purpose is to 

establish appropriate values of widths to improve the characteristic of generalization of 

network. In the case of a null value resulting from the application of equation (8) or (9), 

is repeated the value of the deviation of the nearest cluster; 
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6- A common multiplicative factor Km (10), with values between 1 and 10, serves as the 

additional adjustment of the parameters (widths) in question; 

                                                              σj = 𝐾𝑚𝜎𝑗
′                                                                 (10) 

7- The weights wj of the output layer are then calculated by the least squares method (11), 

where "T" denotes transposed matrix and "-1" inverse matrix, using the regressor Fr, 

output values of Gaussian functions (y1 through yp), and the corresponding expected 

pattern for the output information (Y) of the network; 

Fr = [y1y2  ... yp1]; 

                                                     wj = [Fr
TFr]

-1Fr
TY.                                              (11) 



 

8- Verify the precision achieved by the neural network. If necessary, vary the value of the 

multiplying factor of step 6, or increase the number of network nodes in step 1, and 

repeat the procedure. 

 

4. EXAMPLES OF APPLICATIONS 

Initially some simple examples are shown in order to illustrate the procedure outlined in 

this paper, and afterwards more elaborate applications will be presented. Comparisons with 

results obtained with standard procedures for setting parameters will be provided. 

4.1. Example 1 – Approximation of Function 

This example is didactic, serving to illustrate the application of the approach and 

illustrate the calculations. The RBF network in question is applied to model the nonlinear 

function expressed by (12).A data set of twenty-one samples represents the original function: x1 

= [0; 0.05; 0.1; 0.15; 0.2; 0.25; 0.3; 0.35; 0.4; 0.45; 0.5; 0.55; 0.6; 0.65; 0.7; 0.75; 0.8; 0.85; 0.9; 

0.95; 1]; y = [0; 0.0025; 0.01; 0.0225; 0.04; 0.0625; 0.09; 0.1225; 0.16; 0.2025; 0.25; 0.3025; 

0.36; 0.4225; 0.49; 0.5625; 0.64; 0.7225; 0.81; 0.9025; 1]. 

 

                                                    𝑦 =  𝑥1
2;        𝑥1 Ͼ [0, 1].                                                     (12) 

 

 Three experiments were conducted and are described below: i) Initially it was 

considered the unsupervised procedure with the values of the centers of the radial functions 

randomly selected; ii) The same example was run using a clustering algorithm as shown in 

previous works; iii) The proposed algorithm was then  considered. 

 

4.1.1. Unsupervised procedure (with randomly centers) 

It was assumed a network with three nodes in the input layer, and the values of the 

centers were randomly chosen from the vector data x1. Table 1 contains the values of the centers 

of Gaussians functions. 

Using the expression (3) follows the common value of the widths: σ = σ11 = σ12 =σ13 = 

0.26. With the expression (7) or (11), the values of the weights of the output layer of the 

network are calculated. The simulation of the network model and the comparison with the data 

of the original function resulted in the sum of the squared error (SSE = ∑[y - Y]2/2) of 7.0*10-2. 

Adjusting now the values of the widths individually by expression (5), the values are 

obtained for K = 1.Now the SSE was modified to 2.8*10-2, resulting in improved accuracy of 

the corresponding neural model. 

Now adopting a scaling factor given by (5) or (6) for K = Ke = 3, whose data was tested 

to achieve better accuracy in modeling, follow the values of the widths of the functions of the 

network and weight values of the output layer. The SSE was modified to 7.7*10-5, resulting in 

better accuracy of the corresponding neural model. 

 

 

 

 

 



 

 
 

Tab I Values of centers, widths and weights of the radial functions (Case 1). 

 

4.1.2. Clustering algorithm 

Figure 2 illustrates the clusters obtained via Fuzzy C-Means on data from the original 

system. The resulting clusters are represented by three colors, and their centers are indicated by 

circles in black. The values of the centers of the clusters are (0.1728; 0.0435), (0.5707; 0.3354) 

and (0.8945; 0.8063), respectively, for the vectors x1 and y of the nonlinear function. In Table 

2there are the corresponding values of the centers of the clusters associated with the vector data 

x. Using the procedure defined by equation (5) with K = 3, are also in Table 2 the values of the 

widths of the radial functions and the values of the weights of the output layer of the network. 

Now the SSE (related to the error estimates between the RBF and the original data of the 

system) was modified to 4.4*10-5, resulting in improved accuracy of the corresponding neural 

model compared to previous network. 

 

 
Fig. 2 Data from equation (12) and the respective clusters. 



 

 

Tab II Values of centers, widths and weights of the radial functions with K = 3 (Clustering 

algorithm). 

 

4.1.3. Proposed algorithm 

For the same data clusters (Figure 2), derived from the application of Fuzzy-Cmeans algorithm, 

there are the intervals associated to the vector data x1:[0; 0,05; 0,1; 0,15; 0,2; 0,25; 0,3; 0,35], 

[0,4; 0,45; 0,5; 0,55; 0,6; 0,65; 0,7] and[0,75; 0,8; 0,85; 0,9; 0,95; 1].Calculating by (8) the 

variances associated with each cluster, we have 𝜎11
∗ = 0.1225, 𝜎12

∗ = 0.1080 and 𝜎13
∗ = 0.935. 

 Using (9), we have the values appropriately scaled: σ1
’=0.5*(0.35− 0)/0.1225 = 1.4286; 

σ2
’=0.5*(0.7−0.4)/0.108=1.3889; σ3

’=0.5*(1−0.75)/0.0935=1.3369.For the same value of the 

scale factor K = Ke = Km = 3 (10) used in the previous neural models. In Table 3 are the final 

values of the widths of the radial functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Tab III Values of centers, widths and weights of the radial functions with K = 3 (Proposed 

algorithm). 

 

With the values y1, y2, and y3calculated for the three Gaussian functions corresponding 

to the vector x1 from the input data of the system in question, using (11) with the vector y(data 

expected for the network output) the weights of the RBF are calculated by (11). 

Figure3 shows the data of the original function (“.”) and the estimated data (“+”) for the 

neural network with the parameters determined with the approach suggested in this paper. The 

SSE was modified to 8.6*10-8, resulting in better accuracy of the corresponding neural model. 

 

 

 

 

Fig. 3 Data from equation (12) and the values estimated with the corresponding RBF. 



 

4.2. Example 2 – Application in Prediction of Time Series 

Figure 4 contains data related to prices of a particular commodity, with records of prices 

for seventy-three months. A RBF neural network will be used as model for the corresponding 

time series. The network model was obtained with data of the first sixty-two months, and the 

data of the next eleven months was used to verify the generalizability of the model. 

 

 

Fig. 4 Time series data. 

 

A current price value (k) and the previous value (k-1) were used in order to estimate the 

price of the following month (k+1). The basic structure of RBF neural network will be similar to 

Figure 5, where the modeling variables are: x1 = Previous Price; x2 = Current Price;y = 

Following Month Price. 

 

 

Fig. 5 Example of neural network used for system modeling. 

 

The following experiments described below were considered. 

 

4.2.1. Initially was considered a RBF network obtained via supervised training. 

Using a neural network toolbox (MATLAB), a model (newrb) was generated with a 

good accuracy for the training data. But was noted that with a higher accuracy in the resulting 

model via training data, was obtained a larger error in the predictions with the test data. For 

comparison, the mean absolute percentage error (MAPE) was used between the values given for 



 

the data test and output data estimated by RBF:∑│(Ytest − Yestimated)/Ytest│/N, where N is the 

number of samples. With the model obtained the value of error was: MAPE = 3.8%. 

 

4.2.2. Now using the approach proposed in this paper. 

For the hidden layer network six nodes were adopted. The six clusters of data processed 

by the Fuzzy-Cmeans algorithm are illustrated in Figure 6, where the values of the centers of the 

Gaussian are shown in Table 4. 

 

 

Fig. 6 Time series data and respective clusters. 

 

 



 

 

Tab. IV Values of the centers of the radial functions with Km = 10 related to Example 4. 

 

Applying the approach proposed in this paper and using a scale factor with Km=10 (value tested 

to achieve better accuracy in the neural model), we have the values of the widths and the values

of the weights of the output layer. 

 
Figure 7 shows the training data (black line) and the values estimated (blue line) with 

the RBF network, where the SSE was 35.66. 

 

 



 

 

Fig. 7 Time series data and values estimated with the neural network. 

 

Figure 8 shows the test data (black line) and the prices estimated (blue line) with the 

RBF network for eleven consecutive months (N = 11), where the MAPE was 2.46% (with some 

improvement in the accuracy of the model in relation to the previous neural network). 

Other tests were considered through changes in the structure of the neural networks 

adopted, such as the use of more nodes in the hidden layers, larger numbers of input variables, 

more previous samples to model dynamic systems and time series. Applications in pattern 

recognition were also tested. These results will be presented in later publications. 

 

 

Fig. 8 Time series data and the values estimated by the neural network. 

 

5. CONCLUSION 

The procedure proposed in this paper, for adjusting of the parameters in RBF neural networks, 

is efficient and easy to use in different contexts of applications. The results obtained in 

examples of approximation of functions, modeling of systems with nonlinear characteristics and 

time series forecasting suggest promising potential for various applications in areas such as 

pattern recognition, control systems, signal processing, among others. The accuracy obtained in 

the approximations and estimations used in the examples suggest that the approach is an 

interesting alternative for the strategies of setting parameters for RBF neural networks. 

The following suggestions are proposed for future investigations: 

-The use in the first step of the procedure proposed in this paper of an approach to determine the 

number of minimal clusters for a particular application, for example, with the use of a criterion 

such as Fuzzy Silhouette [4], or others cited in the literature; 

- The use of the procedure proposed in this paper as an initial parameter adjustment for a RBF 

neural network, which later (after the last stage of the procedure), will be refined by training 

techniques based on the gradient descent method, genetic algorithms, etc. 
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